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Abstract. In this paper, a hierarchy of bilinear Caudrey-Dodd-Gibbon-Kotera-Sawada
equations with a unified structure is proposed. A nonlinear superposition formula for the
CDGKS equation is proved under certain conditions. A Bicklund transformation for a
higher-order cDGKS equation is presented.

1. Introduction

There are various kinds of generalizations of the celebrated kav equation to higher-order
equations, one of which is the higher-order xdav hierarchy due to Lax [1]. In 1974,
Sawada and Kotera gave another higher order xdv equation [2] {also see [3]). Through
the dependent variable transformation, we can write this equation as

(DS-D.D)f- f=0 {1)
where the bilinear operator Dy D} is defined by [4]

. {fa oX"{a a\" o
D D a(x f) b(x I) kax aX) k—'__ a(x; l)b(xsr)lx'=x,r':r-

In what follows, we refer to (1) as the Caudrey-Dodd-Gibbon-Kotera-Sawada
equation (CDGKs equation}. Much research on this equation has been conducted. For
example, in [2] the N-soliton solutions of the cDGKS equation were obtained. In 1977,
Satsuma and Kaup presented a Bicklund transformation (&T) for the cpGKs equation
in bilinear form [5]

(DX=A)ff'=0 (2a)

(D, +5ADL+3D0f- =0 (28)
where A is a constant parameter (also see [6]). Starting with the BT (2), an infinite
number of conserved quantities were also derived. In 1981, Sato and Sato gave a
¢DpGKS hierarchy in bilinear form [7]. Subsequently, Date, Jimbo, Kashiwara and Miwa
pointed out that the cpGKs equation can be deduced from the skp hierarchy under
reduction [8, 9]. If we set x=1,, t =t; and denote Df’I = D% DD, = D;D,, equation
{1) can be written as

(DY-D\Ds)f- f=0 (1
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Now we put forward the following bilinear cpGks hierarchy
(DS-D\D5}r-t=0
(9DD,,+5D,,D;~35D,\D,, . +21D?DD,)1- 1=0 (3)
m is an odd integer, m #3k, m ke Z,.

The above equations with m=1,5, 7, 11 and 13 can be deduced from those obtained

in T Nata that tha rave hiararshy oivam ke 2 smaccncnan o i ihad
in (7], Note that the CoGKS hierarchy E,lvcu U)’ \J} possesses a unineda structure in the

form. As we know, such a simple structure will be easier to treat, and lead to much
convenience in calculation when the whole hierarchy of equations are considered. For
example, in [10, 11], we have established the nonlinear superposition formulae for the
Kdv, MKdv and Boussinesq hierarchies respectively with a unified structure. Also in
[12] we have obtained the rational solutions of classical Boussinesq hierarchy with a
unified structure.

By the use of (A.1)-(A.3), (3) can be rewritten as

= 2
U, = s+ S0+ Ul T utu,)
W, = Uyt T(uus, + 20, + 30,05, + 2u2u3x +6u,u U+ ui +§u3ux)

35w, ., = sy, T 21w, e +63uus,, +105u,, Mo +35uw, +1050’u,,

m

+105w, un, +587'w,  +1ldw, w, +Tus"'w, . +21u,, (3"

m=6n+1orén+5neZ, {0}
where u =6(In 7)., w, = # and u,, = d"u/ax*.
From (3') we deduce that
Uy, = Us, + St + Uthees + uPu, )

3”
u,,,, = Lu,, m=6n+1orb6n+5neZ, {0} 37

where

L=0%+6ud*+9u.8"+ (1 1ue + 9173+ (10w, + 21uu,)d + (5u,, + 61>+ 16uu,. + 4u’)

L ey L Rusis L &asoor _L:..Z.. VATl a A=l ., Ly
T sy T Sy T U U T OU H jo T 0 F\LUy T I ).

Obviously, (3") is an equivalent form of the usual cpGks hierarchy [13, 14] and L is
a recursion operator of the cpGKs equatian [14]. In the following discussion, we only
focus our attention on the first two equations of cpaks hierarchy (3). As for the other
equations of (3), much work remains to be done.

This paper is organized as follows. In section 2, the cDGKs equation is considered.
Under certain conditions, we obtain the corresponding nonlinear superpaosition for-
mula. A BT for (3) with m =1 is presented in section 3. Finally we list some bilinear
operator identities in the appendix which are used in the paper.

2. Nonlinear superposition formula of the cpcks equation

In this section, under certain conditions, we establish nonlinear superposition formula
for the cDGKs equation. In [ 15], we have considered nonlinear superposition formulae
of the Ito equation and a model equation for shallow water waves, which is different
from those of the Kdv, MKdV equations. We shall see that the nonlinear superposition
formula given in the section is the same as that of [15].
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In what follows, let f; be a solution of the cpGks equation (1), f, # 0. Suppose

that fi(i=1,2) is a solution of (1) which is related by f, under BT(2) with A,, i.e
fo—25 £, (i=1,2), and that f,, is defined by
D.fo-fo=kD.f, 15 (where k is a non-zero constant) (1)

From these assumptions, we deduce that

0=[(D}- A Alf—UD = Ao - filfy
A 3 fouDofs ot 3o Doy fo)e—— Sl DY fo4 3(Dufy  Fi)ue]

AL
S fouDuo firt S o Doy - fo[Diﬁ-fﬁ%(Dxﬁrf]z)xx]

+ (A=A fof Sz
=fo[ Difo Sia— Dlﬁ ot (A — A, )ﬁfz]

which implies that
1
ZDifl (A= ANt Difo f2=0 (5)

and

0=[(Di_A )fofll fz_[(DS_ 2)fo'f2] fl
A oDy fitr Sl DU S+ 3Dy o))

‘*—fo[(D N Fdx H(D i fo)x]

A=A (fif2)i]

+f0xuz~a‘)f1fz—1ﬁ[u1+,\2)nxfl fat (A

= fOMD fo- f.z+f0x[ ifl-ﬁ+(A2—A,)Lf2+2—3,;(Dxfo-f,z)_u]

1 1
+fo[‘ W 'fz"ﬁ (D fo* f12) e +_2'(’\2_Al)f1f2]
_L fol Ay + A:)Dxm ‘fiz

1
=f0x|:_ xfl fz xfO f12+(/\2 A1)f1f2_E(/\1'*')‘2)foflz]

b2 |:—-1-Dif1 'fz—"l—D.?cfn'f12+%()\2—)h)f|f2+2—1k‘(M'{"\z)fofu]

fm[ Dife f12+ Difi f- ()H""\z)foflz:I

3, 1
AL Dl St D e p e |
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which implies that

1 3 1
D}, 'flz"'z DA fz__]; (Mt 22) fofia= a1} f§

(6)

where ¢,(t) is some function of . Here and in the following, we assume that there

exists a f;, determined by (4) such that ¢,(#) =0, i.c.

1 3 i
S r Diﬂ) 'f12+".' Difl ) fz"',’, (A + f\z)fofu: 0
4K 4 K

In this case, we have from (5) and (6')

D21 1= (3 01+ A0 i3 D)

(- r0fif=3 (3 D2 St (A+A2>fof.z)

Further, from

(D +80Di+3DN fi - fi1—[(D+8ADE+3ID0) - £1£,=0

we can deduce that, by using (A.G) (A7), (4), (7) and (8),

14
17

~Difi St (A ~A)Df - Dy o (A +A)Difo fa

45

_32_k Difo flz

Similarly, from

[(D:;:— )‘l)f() '.fl]xx.f2_ [(Di—/\Z)ﬁ] ' .fZ]xxfl =0
we can deduce that, by using (4), (7) and (8)

"Difl‘fz""‘uz )D fi fz——(A +A )D Jor f|2+ Dxfo flz—O

Moreover, from

[(D +1—5,\ D2+2D5)fo f,] fz—[(D,+l—25-r\zDi+%Di)ﬂrfz]xﬁ

5
+2UDL= Ao e fom 5 (D= Ao il fi =0

fox[%D,fo-f.z B +a)Dify fiot
45 : 5

+?(A2"'\1)D fl fz Dxfl fz:]

—%JB[%DJO-fn 2 0D fat 5o Do fra

_()‘Z_AI)D.fl f2+ Dif: fz] =0

(6)

(7

(8)

(9)

(10)
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which implies that

1
Dfy fir+ (,\ +AIDL o frat 5o Difo Firt 5( = A)DE S fo

+32 aif, - f=c0)f8 (11)

where ¢, f+) ie enme Himetinn nf ¢ Furtharmara we aceiime that .. Asterminad hy (4)
»1 i) 15 some unction ¢f L rurinérmere we assume inat jfy; gelermi neg by (&)
s chosen such that c,(¢) =0, i.e

Do futgr M ADD - frat 7o Do St o (a= DDA

2 Difi =0 (12)

Then similar to the deduction of (5) and (9), we can get, by using (6') and (12), that
Qufo=[(Di— 1) fi - fi2l o=0

Q.fo= [(D: +'135 1\2D§+% sz)fl 'fu]fo =0
(DY=A)fr  fiz=0

(D,+1—2§f\zDi+% Di)f] f12=0

Similarly, we can show that
(DY M) fz=0
15 3
(D,+-§— .\,Di+5 Di)f2 “Ji2=0.
Therefore fi» is a new solution of the cpGks equation (1), which is related by
fiand f.

Tnh m un. we can nhtain en
R H Wpr, VYA Cdn ¢ofaln sgme LAY TAG LIV BV ARG Sl i

choose a given solution fy of cDGKs equatmn (1) Second from the g1 (2) we ﬁnd out
f, and £, such that f, 25 f; (i=1,2) and further get a particular solution £, from (4).
Then a general solution of {(4) is fio=c(1)fo+ fiz (where ¢(1) is an arbitrary function
of t). Finally we substitute f,, into (6) and (11). If ¢(¢) can be determined such that
c,(1) = ¢5(t) =0, the corresponding f,. is a new solution of the cbaks equation. For
example, we have

, em+eh
A \{’51 P - P2en+’12+_P_£3 C+es
P,+ P, P+ P

\ / +2ﬁ;£2. c“z+5|+_._.£.£2-e‘71+‘2
“og gn2 + cfz ,?‘ wPl -+ P2 Pl + sz

2

1

where 7,=Px —-9P%t+n°, {,=wPx—-9Piw*t+{}, P, 77 and {? are constants, and
w=-1/2+(3/2)v/~1,i=1,2. So
(Pl_Pz)eﬂl+Trz (Pl e; +;+(mpl )e; +n, +(PJ-WP2)C7,.+;2
(PE+P2) (P1+Pz) (0P, +Py) (P, + wP,)
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is a solution of (1)

‘1+e
/' N2 ()" +ed) - 4x(—e”+-—1—-e)
\ / +4(P2e + zlpze)

where 1 =Px—9P°t+7°, {=wPx-9P°«%1+{°% P, »° and {° are constants, and
w=-1/2+(/3/2}v/=1. So

1 1 1 1
(1+x2)(€”+e‘)—4x(5 en+ﬁ e‘) +4(F e” +W e‘)

is also a solution of (1).

3. A bilinear BT for a higher order cDGxs equation

In this section, we consider equation (3} with m==1, i.e.
(D= D, Ds)r-7=0 (13a)
3D*—10D,D;+7D3D)7r- =0 (13b)
For (13), we obtain the following results.

Proposition. A wt for (13) is

(D= A)r-7'=0 (14a)
(DA+EADI+3ID) r- =0 (14b)
(80D, +840A%D, +525AD1+ 39D —84D D)7+ 7' =0 (14c)

where A is an arbitrary constant.

Proof. Let  and 7' be two solutions of (13). If we can find three equations which

relate = with ', and satisfy

P,=7D}—D,D)r- 1 —7(D}— D;D)7  7'=0

P,=7*(3D%-10D,D,+ 7D Dg)r - 71— +* (3D}~ 10D, D,+7D3Dy)7 - 7' =0

This is then a BT. Here we show that (144, b, ¢} indeed provides a BT for (13).
According to [5], we know that P, =0 can be proved in terms of (14a, b, ¢). Thus

it suffices to show that P,=0. Making use of {(A.11)-(A.15), (14a, b, ¢), P, can be
rewritten as

(AID(AN2)(AL3)

P, s —— 301 D3 (D37 1) - ' +1D3(Dir- ) - ' = YD{Dir- 1) - o'
+8D(Dir ) (D Y+ ED(DIT ) - (D7 1)
+¥DU DT ) (Dir )} =20D(Dy7- 1) - 7'+ DY Ds7 7) » 17
-2D5(D,'r' ') +3D,[(DiDs7- ) - 7'+ (Dyr - 7) - (D7 7)1}

IDAD}r-7) - 7 +7D1[{D5 21)5)1-- 1 = ZD(D{r 7)1

+21D1[(D5+§D5)T ' )+ ED(Dyre ) (DT 1)
+¥DH DT 1) - (Dir- 1')—20D1(D71-- 'y
—14Ds(D37- #) - 7' +21D(DiDsr 7' - 77’
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M—'}%S‘AD::(D%T' ) =ZD(Dir- ) 1+ DA - (Dl 1)
+P2DjArr' - (Dir- 7)=20Dy(Dy7- 7') 7'+ 21Dy(DiDsr - 1) - 77’
= —105ADY(Dir 7'} 17’ = RD(Dir- ') - 7' 1 FAD(D} 7 ) - 11!
—20D,(Dy7- 7') - 77’ +21Dy(D{Ds7- ') - 77’
m

—105AD,[(Dir- ) - ' =2(Dr- ) - (Dy7- TY - FD(Djr- 1) - 17
—AD(Dj7- 1) - 7' =20D,( D7 7)o+ 21D (DIDsT ) - 17

(14a)

DJ{(-BAD}-210A°D, - ¥ D] -20D,+ 21D D)7 7'} + 7'

(I14cj

Thus we have completed the proof of the Proposition.
As an application of the s (14), we can easily obtain the one-soliton solution of {13)
T=1+exp(px —9p°ts—27p" t,+ 1)

where p, 1o are constants.
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Appendix

The following bitinear operator identities hold for arbitrary functions a, b, ¢ and d:
(DiDa- a)/a’

= sy + TWetla + 210t T 350, 0,0 T 1051{314’,

+105uu,, + 105w, (A1)
(D2D,Da- a)/a*=2ww,+ud”'w,+u, {A.2)
(D,Da-a)/a*=3"w, (A.3)

where #=2(lna),,, w,=1u,
(Dia- b)e—(Dla-c)b
=-3a, Db c+3a (Db ¢}, —3a[Dib- c+3(Db- c)] (A.4)
(Dia b)c—(Dia-c)b
=-2a,.Db c+la[Dib- c+3(Db- ¢)]
—3a{(D3b- ¢} + (Db €}l (A.5)
{Da-b)e—(Da-c)b=—aDb: ¢ (A.6)
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(Dia-b)e—(Dia- )b
= = 5@ Dib €+ 108, (Db ¢)~3a.[Dib- c+3(Db- ¢) ]
+3a,[(D3b- ¢)x + (Db €)ane)

—&a[Dib- c+10(D3b - ¢)ax +5(Dyb* €)nx ] (A7)
(Da-b)c—(Da-ehb=aDb-c~aDb-c=3al(Db-c},+(Db- c),] {A8)
(Dia- b)e—(Dia: ¢)b+5(Dra" b) e —5(Dia: )b

= — 40D € — 1080 (Dib - €)+5a0[(D3b ¢) +{(Dib- €) ]
+ia,[Dib- c+10(D3b ¢) +5(Dib - €)ine ]

—3a[3(D3b - ¢)+10(D3b- €) o+ 3 (Db - €) i) (A.9)
M(Dzas b)e—A(Dia- )b — A \(ab) ot + Ax(ac) b

= =2a,{(A+12)(Dyb- ¢),+3(A, = A)[Dib - c+(be) ]}

=2a,[(A,+A;) Db+ c+(X, = A;)(be),] (A.10)

(D%a-a)b*—a’D% - b
=ID3(Dla-b) - ab+1iD¥(D3a-b) - ab-2D (D.a-b)- ab

+3D.(Dla- b) - (Dia- b)~¥D,(Dla-b)- (Dia-b)

+3¥D3(Dla-b) - (Dia- b) (A1)
(D.Da-a)b*—a*D,Db-b=2D(Da-b) ab=2D,(Da-b)- ab (A.12)
(D}D,a: a)b*—a’DiD,b: b

=D¥D,a-b)-ab-2D,(D%a-b) ab

+3D,[(D2D,a- b) - ab+(D,a- b) - (Dia- b)] (A.13)

DY 'g-a=0 n=0,1,2,... (A.14)

DD a-b)-ab=D,[(Dia-b) - ab-2(D3a-b)-(D.a-b)] (A.15)
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