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Abstract. In this paper, a hierarchy of bilinear Caudrey-Dodd-Gibbon-Kotera-Sawada 
equations with a unified s tmawe  is proposed. A nonlinear superposition formula for the 
CDGKS equation is proved under certain conditions. A BPcklund transformation for a 
higher-order CDCKS equation is presented. 

1. Introduction 

There are various kinds of generalizations of the celebrated Kdv equation to higher-order 
equations, one of which is the higher-order Kdv hierarchy due to Lax [l]. In 1974, 
Sawada and Kotera gave another higher order Kdv equation [2] (also see [ 3 ] ) .  Through 
the dependent variable transformation, we can write this equation as 

(D: - D,D, )~ .  f = o (1) 

where the bilinear operator D,"D: is defined by [ 4 ]  

In what' follows, we refer to (1) as the Caudrey-Dodd-Gibbon-Kotera-Sawada 
equation (CDGKS equation). Much research on this equation has been conducted. For 
example, in [2] the N-soliton solutions of the CDGKS equation were obtained. In 1977, 
Satsuma and Kaup presented a Backlund transformation (BT) for the CDGKS equation 
in bilinear form [51 

(D: - ~)f.f'= o ( 2 0 )  

(D ,  + ~ A D : + ; D : ) ~ .  f'= o (7.6) 

where A is a constant parameter (also see [ 6 ] ) .  Starting with the BT ( 2 ) .  an infinite 
number of conserved quantities were also derived. In 1981, Sato and Sato gave a 
CDGKS hierarchy in bilinear form [7]. Subsequently, Date, Jimbo, Kashiwara and Miwa 
pointed out that the CDGKS equation can be deduced from the BKP hierarchy under 
reduction [8,9]. If we set x = t , ,  f = f, and denote De, = DY, D,,D,, = D,D,, equation 
(1) can be written as 

(D: - ~ , ~ , ) f . f =  0 (1') 
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Now we put forward the following bilinear CDGKS hierarchy 
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( D: - D , D , ) ~ .  T = o 
(9070, +~D,D,-~~DID,+,+~~D:D~D,)~. T =  0 (3) 
m is an odd integer, m # 3k, m, k E Z+ 

The above equations with m = 1, 5 ,  7, 11 and 13 can be deduced from those obtained 
i:: [?j, Na!e !ha: !he CXKC hie:a:chy g i v k  by (3) possesses a iinified siiiiiiiiie in the 
form. As we know, such a simple structure will be easier to treat, and lead to much 
convenience in calculation when the whole hierarchy of equations are considered. For 
example, in [ lo ,  111, we have established the nonlinear superposition formulae for the 
K d v .  M K d v  and Boussinesq hierarchies respectively with a unified structure. Also in 
[12] we have obtained the rational solutions of classical Boussinesq hierarchy with a 
unified structure. 

By the use of (A,l)-(A,3), (3) can be rewritten as 

u5,+5(u,u,,+uu,+u~u,) 

U,, = u,,+7(uu5, +2uxu4, +3uxxu3x + ~ U ' U , ~  +6u,u,,u,, + u:+$u'u,) 

35w,*+, = 9uSX,", +21w,,,,u4, + 6 3 u ~ ~ ~ , ~  + 1 0 5 ~ . , ~ ~ u ~ ,  + 3 5 ~ ~ w , ~  + 105u'u, ,,,, 

+ 105 w ,,uu,, + sa-' w ,,,*,, + 14w ,", w + 7 ua- ' w,,c,oe + 2 1 U (3') 
m = 6 n +  1 or 6n + 5 ,  n E Z,u{O}. 

k k  where U = 6(ln T ) ~ ~ ,  w, = U and ulu = J u/Jx . 
From (3') we deduce that 

U,,= uS,+5(u,u,,+uu,,+U2U,) 
(3") 

= 1% m = 6n + 1  or 6n + 5 ,  n E Z+u {O) 
where 

L =  J6+6uJ4+9u,J3+(llu,+9u2)JZ+(lOu3,+21uu,)J+(5u,,+6u~+ 16uu,,+4u3) 

T~u5xTJuu)xTJuxuxx 1 _I.. U,]O -ux0 ,.Luxx-r14 I .  r,.. I C  .... ~ L C  .... L 2 . . 2 . . \ . - 1 I . .  ? - I : , - . .  r.2, 

Obviously, (3") is an equivalent form of the usual CDCKS hierarchy [13, 141 and L is 
a recursion operator of the CLICKS equation [14]. In the following discussion, we only 
focus our attention on the first two equations of CDGKS hierarchy (3). As for the other 
equations of (3), much work remains to be done. 

This paper is organized as follows. I n  section 2, the CDCKS equation is considered. 
Under certain conditions, we obtain the corresponding nonlinear superposition for- 
mula, A ET for (3) with m = 1 is presented in section 3. Finally we list some bilinear 
operator identities in the appendix which are used in the paper. 

2. Nonlinear superposition formula of the CDCKS equation 

In this section, under certain conditions, we establish nonlinear superposition formula 
for the CDGKS equation. In [15], we have considered nonlinear superposition formulae 
of the Ito equation and a model equation for shallow water waves, which is different 
from those of the K d v .  M K d v  equations. We shall see that the nonlinear superposition 
formula given in the section is the same as that of [15]. 
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In what follows, let fo be a solution of the C D G K S  equation ( l ) ,  fo# 0. Suppose 
that f ; ( i=  1 ,2 )  is a solution of ( 1 )  which is related by fo under e ~ ( 2 )  with A i ,  i.e. 
fo&h ( i = l , 2 ) ,  and thatf,, is defined by 

D x f o  . f i 2 =  k D x f i  ' f 2  (where k is a non-zero constant) (4) 

From these assumptions, we deduce that 

O =  [ ( D :  - A,)fo . f i l h - [ ( D :  -A, )& . f 2 l f i  

(A.4) 1 
=- 3fozxDxfi . f z+3f0x(0xf i  .f2)x-,/OCD:fl . f z + 3 ( D X h  ..MxxI 

+ ( A 2 - A , ) f o f i . G  

~ - i f o ~ ~ D ~ ~ . f l ~ + ~ f o ~ ( D ~ f o  (4) 3 3 .fl2),-;fo[D:f1 1 ~ f z + ~ ( ~ x f o ~ f ~ 2 ~ x x ]  3 

+ ( A 2  - A i ) f o f i f >  
3 1 =fo [ -z D:fo. f i 2  -- 4 D;h , fz+ (A, - A~lfiL] 

which implies that 
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which implies that 
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where c , ( f )  is some function of f. Here and in the following, we assume that there 
exists a f t2  determined by (4) such that c , ( t )  =0,  i.e. 
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which implies that 

where Cl(!) is snme rccctinn of :. F.'.+he:Eore we assllme :hat f,> determined by (4) 
is chosen such that c , ( t ) = O ,  i.e. 

Then similar to the deduction of ( 5 )  and (9), we can get, by using (6') and {12), that 

4?1f,- [ (D: -  A d f i  . f i z l f o  = 0 

Similarly, we can show that 

(0: - A 1 ) f 2  . fi2 = 0 

Therefore f12  is a new solution of the CDGKS equation ( l ) ,  which is related by 
fi and f2. 

Tc yu" up, we cac &:ai:: some paEicu!ar so!u!iens via the fn!!o:ving s:eps. Firs: 
choose a given solution fo of CDGKS equation (1). Second from the BT (2) we find out 
f, andf, such thatf ,  &1; ( i  = 1,2) and further get a particular solution f,, from (4). 
Then a general solution of (4) is f i 2 =  c(t)fo+fi2 (where C(I) is an arbitrary function 
of 1 ) .  Finally we substitute f i2  into (6) and (11). If c ( t )  can be determined such that 
cl(t) = c 2 ( t )  =0, the corresponding f,2 is a new solution of the CDGKS equation. For 
example, we have 

where q,=P,x-9P:t+qy, 5,=oPix-9P:w2t+5P, P,, 7; and 5; are constants, and 
0 = -1/2+(&/2)./=i, i = 1,2. so 
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is a solution of ( 1 )  
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is also a solution of ( 1 ) .  

3. A bilinear BT for a higher order CDGKS equation 

In this section, we consider equation ( 3 )  with m = 1 ,  i.e. 
(0:- D,D,)T. T = 0 

( 3 D ~ - 1 0 D , D 7 + 7 D ~ D S ) r ~  T = O  

For (13), we obtain the following results. 

Proposition. A BT for ( 1 3 )  is 

( D : - A ) T .  T ' = O  0 4 a )  
(D ,+~AD:+;D: )  T . T'= o (146)  
(80D7+840A2D, +525hD:+39D: -84DiD,)~'  T' = 0 (144 

where A is an arbitrary constant. 

ProoJ: Let T and T' be two solutions of (13) .  If we can find three equations which 
relate T with T', and satisfy 
P: = T " ( D ~ -  D,D:)T. T - T ~ ( D ~ -  QD:)T' r'= o 
P2-  T " ( ~ D ? -  l O D , D , + 7 0 : 0 ~ ) ~ ~  T - T ' ( ~ D ; -  10D,D,+7D:Ds)~'~ T ' = O  
This is then a BT. Here we show that (14a. b, c )  indeed provides a BT for (13 ) .  

According to [SI, we know that P, = 0 can be proved in terms of (14a, b, c ) .  Thus 
it suffices to show that P 2 = 0 .  Making use of (A.l l)-(A.l5),  (140, b, c ) ,  P2 can be 
rewritten as 

iA.ll)iA.l2)(A.l3) 
p2 ~ { ~ D : ( D : T .  7') TT'+~D:(D:T.  T ' )  . TT'-yD,(D:r.  T ' )  . TT' 

+ ~ D , ( D : ~ .  7 ' ) .  (D:T. T ' ) + ~ D , ( D : T .  T') . (D:T.  7') 

+TD:(D:T. 7') ' ( 0 : ~ .  ~ ' ) } - 2 0 0 , ( D , ~ .  T ' )  ' m ' + 7 { D : ( D 5 ~ .  T ' ) '  77' 

-ZD,(D:T. 7 ' )  ' T T ' + ~ D ~ [ ( D : D ~ T .  T') ' TT'+(D'T. r') ' (D:T.  T ' ) ] }  

=+g(~i~.  T ) .  T T ; + 7 ~ i [ i D 5 + ~ 1 s ) i ) T .  77i-Tu,(~?T. . e ) .  TTi  

+21D,[(Ds+$D:)r.  T ' ] .  ( 0 : ~ .  T ' ) + ~ D : ( D : T .  r' )  . (D:T. T ' )  

+ ~ D : ( D : ~ . T ' ) . [ D : T . T ' ) - ~ ~ D , ( D , T . T ' ) ' T T '  

- 1 4 0 , ( D : ~ .  7') ' r r '+21DI(D:Ds~ .  7 ' ) .  TT' 



(A.15, 
- _- 105hD,[(D?~.  7’) ’ T T ’ - ~ ( D : T .  7 ’ ) .  ( 0 , ~ .  T ’ ) ] - ? D ~ ( D ~ T .  7’) .  TT‘ 

105 -+D,(D;T. r’) ‘ T T ’ - ~ O D , ( D ~ T .  T ’ )  ’ r7 ’+21D, (D:D5 . r .  7‘) ‘ 77’ 

(140) - - D , { ( - ~ A D ~ - 2 1 0 A 2 D , - ~ D ~ - 2 0 D , + 2 1 D ~ D s ) ~ ~  T ’ )  TT’ 

(14cl - 0. 

Thus we have completed the proof of the Proposition. 

- 

As an application of the BT (14), we can easily obtain the one-soliton solution of (13)  

T = 1 +exp(px - 9 p S t s  -27p7t7+ qO) 

where p,  TJ,, are constants. 
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Appendix 

The following bilinear operator identities hold for arbitrary functions a, b, c and d :  

(D:D,a. a ) / a 2  

= us=, + 7w,u,, + 21uu,,, +35u,,u, + 1O5u3w, 

+ 105u2ux,+ 105w,uu, ( A . ] )  

(D:D, ,D,a .  a ) / a ’ =  2w,w,+ ua-‘w,.,.+ u , ~  (A.2) 

(D,D,a. a ) /a2=d- ’w lv  (A .3 )  

where U = 2(ln a)xx,  w, = U, 

( & a ,  b ) c - ( D l a .  c )b  

= -3a,D,b’ c+3a , (DXb.  c ) , -&[D:b .  c + 3 ( D X b .  c ) ~ ? ]  

(&a b),c - c),b 

=-2a,,D,b. c+ ta , [D:b .c+3(D,b . c ) , ]  

- ta [ (D:b .  c ) , f ( D , b .  c)xxxl 

(D,a.  b ) c - ( D , a .  c ) b = - a D , b .  c 

(A.4) 



3212 

( D : a ' b ) c - ( D : a . c ) b  
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= -5a,D,b~ c+ IOa,,(D,b~ c),-~a,,[D:b~ c+3(Dxb' c),] 

+ h [ ( D : b .  C),+(D,b. C ) , ~ ~ I  
-&a[D:b. C +  10(D:b. c ) ,  +5( D,b. c ) ~ ~ ~ ~ ]  (A.7) 

(D,a b),c - (D,a c),b = a,D,b. c -  a,D,b. c - fa[(D,b.  c ) ,  +(D,b.  c),] (A.8) 
(D:a.  b),c - (  D:a c),b+5( D:a. b),,c-S(D:a c),,,b 

= -4a,,,,D,b~ c - lOa,,,,(D,b c),+5a,[(D:b c).+(D,b. c ) ~ ~ ~ ]  
++a,[D:b. c +  10(D:b' c),+5(DXb. c ) ~ ~ ~ ~ ]  

- ia[3(D:b.  c ) ,  + lO(0:b.  c ) ,  +3(D,b. c)xxxxx] (A.9) 
A,(D:a b),c-A,(D:a. c),b -A,(ab),c +A,(ac),b 

= -2ax{(A1 +A,)(D,b. c ) ,+ f (A ,  - A,)[D:b. c+( bc),]} 

-2axx[(A,+A2)Dxb. c + ( A ,  -A2)(bcL1 (A.lO) 
(D:a.  a)b2-a2D:b.  b 

= ~ D : ( D : a . b ) . a b + ~ D : ( D : a . b ) . a b - ~ D , ( D : a .  b ) . a b  
++D,(D:a. b ) . ( D : a .  b)-YD,(D:a. b ) .  (D",. b )  

+FD:(D:a.  b )  . (D:a.  b )  (A.11) 
(D,D,a. a)b2-a2DxD,b'  b = 2Dx(D,a. b )  ab =2D,(Dxa b )  . ab (A.12) 
(D:D,n. a)b2-a2D:Dyb. b 

=D:(D,a. b ) . a b - 2 D y ( D : a . b ) . a b  

+3D,[(D:D,a. b) .ab+(D,a .  b ) . ( D : a .  b ) ]  (A.13) 
D?+'a. a = 0 n = O ,  1,2, .  . . (A.14) 
D:(D:a .b) .ab=D,[(D;a .  b ) . a b - 2 ( D : a .  b ) . (D ,a .  b ) ]  (A.15) 
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